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Osteosarcoma is a primary bone malignancy with a particularly high incidence rate in children and adolescents relative to other age
groups. The etiology of this often aggressive cancer is currently unknown, because complicated structural and numeric genomic
rearrangements in cancer cells preclude understanding of tumour development. In addition, few consistent genetic changes
that may indicate effective molecular therapeutic targets have been reported. However, high-resolution techniques continue to
improve knowledge of distinct areas of the genome that are more commonly associated with osteosarcomas. Copy number gains
at chromosomes 1p, 1q, 6p, 8q, and 17p as well as copy number losses at chromosomes 3q, 6q, 9, 10, 13, 17p, and 18q have been
detected by numerous groups, but definitive oncogenes or tumour suppressor genes remain elusive with respect to many loci. In
this paper, we examine studies of the genetics of osteosarcoma to comprehensively describe the heterogeneity and complexity of
this cancer.

1. Introduction

Osteosarcoma is the most common primary bone malig-
nancy, with a high incidence rate in children and adolescents
compared to other age groups. Tumours most often arise
in the long bones from osteoid-producing neoplastic cells
adjacent to the growth plates, occurring less commonly in
the axial skeleton and other nonlong bones [1]. Survival rates
for osteosarcoma have remained at 60–70% for localised
disease for decades despite ongoing studies [2]. Unlike many
sarcomas which are characterised by specific chromosome
translocations, complex genomic rearrangements involving
any chromosome characterise individual osteosarcoma cells.
Because of this few consistent genetic changes that may
indicate effective molecular targets for treatment have been
reported.

Decades’ worth of molecular cytogenetics studies and
genomic analyses of osteosarcomas have been completed
through karyotyping, comparative genomic hybridisation
(CGH), fluorescence in situ hybridisation, quantitative PCR,
and single-strand conformation polymorphism analysis,
among others. Genome-wide association studies utilising
single-nucleotide polymorphisms (SNPs) have been used
more recently to learn more broadly about osteosarcoma

genomics [3]. Resolution of alterations has increased from
visualisation at the chromosome level to point mutations,
but the genetic etiology of osteosarcoma is still unknown.
One consistent finding, however, is the higher incidence
of osteosarcoma relative to the general population in
individuals with familial Li-Fraumeni syndrome (germline
TP53 inactivation), hereditary retinoblastoma (germline RB1
inactivation), Rothmund-Thomson syndrome (germline
RECQL4 inactivation), or Bloom or Werner syndrome
(germline BLM or WRN inactivation, resp.) [4–8]. The
genes associated with all of these familial syndromes encode
protein products necessary to stabilise the genome, and their
impairment can manifest in defective maintenance of DNA.

In this paper, we have collected studies of the genetics of
osteosarcoma to illustrate the heterogeneity and complexity
of this tumour type at the level of the chromosome
and gene. Osteosarcoma-specific epigenetic changes, mRNA
and protein level aberrations, and changes to microRNA
(miRNA) will not be described extensively in this paper.
Other publications on these topics exist and offer more
thorough descriptions of the epigenetic [9], expression [10,
11], and miRNA profiling [12, 13] of osteosarcoma. To
understand the molecular dynamics of this disease at any
level, it is important to first recognize the fundamental role of
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the disruption of cellular mechanisms intended to maintain
genomic instability.

2. Genomic Instability in Osteosarcoma

Osteosarcoma is characterised by a high level of genomic
instability, in particular one subcategory of instability known
as chromosomal instability (CIN) [14, 15]. Microsatellite
instability (MIN) and CpG island methylator phenotype
(CIMP) are two other forms of genomic instability, and
they have been described extensively and predominantly in
colorectal cancer [16, 17]. CIN is the elevated rate of gain
or loss of entire chromosomes or sections of chromosomes
[16, 18], and it appears to be significant in the pathogenesis
of osteosarcoma tumours, resulting in complicated structural
and numerical aberrations and wide variability between cells
[19].

CIN is categorised in two subtypes, numerical CIN (N-
CIN) and structural CIN (S-CIN). Processes underlying
N-CIN are those leading to copy number alterations. N-
CIN is manifested in polyploidy, caused by errors in
mitosis, aneuploidy, segmental amplifications, or deletions,
and unbalanced translocations. S-CIN can result from
ineffective DNA damage response mechanisms following
exogenous insults or replication errors, leading to aber-
rant genomic rearrangements, chromosomal breakages, and
usually, but not necessarily, gene copy number alterations
[20]. Karyotypic complexity in tumours, an end product of
CIN, is correlated with higher expression of survival- and
tissue invasion-related genes and lower expression of those
involved in checking cell cycle regulation and ensuring DNA
repair [21].

Mutations or deregulation of genes important for mitotic
checkpoints is thought to be the underlying cause of CIN
[22]. For example, inactivation of the tumour suppressor
proteins p53 and pRB cause CIN in vivo [23, 24]. Addi-
tionally, mutation of TP53 is significantly correlated with
high levels of genomic instability in osteosarcoma [25],
while mutation of RB1 contributes to mitotic missegregation
and loss of heterozygosity (LOH) in mice [26]. In a study
of 18 osteosarcomas, an association was made between
overexpression of RECQL4, a gene which encodes a DNA
helicase, and S-CIN [27]. Whether mutator mutations are in
fact required to induce carcinogenesis by increasing the rate
of genetic change is still in question [28].

Telomere maintenance, or lack thereof, is another poten-
tial source of the instability typical of osteosarcoma, in
addition to reducing the likelihood of favourable outcome in
patients with the disease. Telomerase activation is a mech-
anism by which human cells can bypass their theoretical
life span defined by the number of cell divisions required
to critically deplete telomere length (the Hayflick limit),
thereby avoiding senescence [29]. Rather than activation of
the telomerase subunit genes, the alternative lengthening
of telomeres’ (ALTs) mechanism of preserving telomeres
is more frequently observed in sarcomas [30]. Telomerase
activation and ALT both contribute to telomere maintenance
in osteosarcoma, but ALT seems to be the predominant

process [31, 32]. Interestingly, ALT is more common in
sarcomas not associated with specific translocations [33]
and therefore may be associated with more complex chro-
mosomal aberrations in some tumours [34, 35], including
osteosarcomas [36, 37]. In females, shorter telomere length
is associated with increased risk of osteosarcoma [38].
Additionally, cellular telomere maintenance is associated
with poor outcome for osteosarcoma patients [39], but
enzymes facilitating ALT may have potential as therapeutic
targets [40].

3. Genetic Alterations by Osteosarcoma Subtype

The vast majority of studies have been descriptions of
osteosarcomas focused on the conventional, high-grade
subtypes including the chondroblastic, fibroblastic, and
osteoblastic variants. These are the most frequently occur-
ring types of osteosarcoma. The rarer subtypes include
telangiectatic, small cell, periosteal, high-grade surface, and
low-grade osteosarcoma. These forms often present with
distinguishing genetic features infrequent in conventional
tumours.

3.1. Conventional Osteosarcoma. Complex and largely incon-
sistent genetic alterations are typical of conventional
osteosarcoma. Overall, some frequent genetic alterations
in conventional osteosarcoma are losses of portions of
chromosomes 3q, 6q, 9, 10, 13, 17p, and 18q and gains of
portions of chromosomes 1p, 1q, 6p, 8q, and 17p (Table 1;
Figure 1). In general, regions in which known tumour
suppressor genes are located undergo deletion and mutation
events, while those possessing established oncogenes are
gained or amplified in cells. Unfortunately, for many of the
alterations described in this paper there exist wide ranges of
observed frequencies among published reports. These can be
due to inconsistencies between materials and methodology
used by groups, including differences in the resolution of
cytogenetic techniques and platforms, variation between
tumour cohorts with respect to staging, histological subtype,
and sample size, and whether specimens have been exposed
to chemotherapy (chemotherapy drugs may induce DNA
damage). The low incidence rate of osteosarcoma exacerbates
the limitations on genetic studies of this disease because
it lowers the availability of samples. Furthermore, a high
level of chromosomal instability is thought to cause the
profound intra- and intertumoural heterogeneity observed
in and among specimens, in which abnormalities such as
heterogeneously staining regions, double-minute chromo-
somes, and dicentric chromosomes are not uncommon.

Inactivation of RB1, located at chromosome 13q14.2, is
frequent in sporadic osteosarcoma, and when it occurs due
to germline mutation, osteosarcoma incidence significantly
increases [41]. RB1 encodes the tumour suppressor protein
pRB which is essential in preventing cell cycle progression
through G1/S following DNA damage. Mechanistically, the
protein inhibits members of the E2F transcription factor
family, a process that requires strict regulation of the cyclins,
cyclin-dependent kinases (CDKs), and cyclin-dependent
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Table 1: Frequent genetic alterations in sporadic conventional osteosarcoma.

Genomic region Event Frequency
Effected genes

References
Tumour suppressor

gene(s)
Oncogene(s)

1q10-q12, 1q21-q31 Amp 6–59% [50, 55, 77, 82–84]

3q13.31
Del,
LOH

6–80% LSAMP [44, 45, 49–55]

5q21 LOH 62% APC [109]

6p12-p21
Gain,
Amp

16–75%
RUNX2, CDC5L,

VEGFA, PIM1
[9, 20, 45, 49, 65, 77, 78, 82, 89–92]

6p22.3
Gain,
Amp

60% E2F3 [92]

7p21
7q31

Del
Amp
Del

Amp

36%
14%
41%
9%

TWIST
MET

[109]

8q24.21 Amp 7–67% MYC [20, 45, 49, 55, 71, 78, 81–83]

8q24.4
Mut <5% RECQL4 [85]

Gain 33% RECQL4 [27]

9p21 Del 5–21%
p16/INK4A,

p14/ARF,
p15/INK4B

[48, 60–63]

10q26 LOH 60%
BUB3,
FGFR2

[106]

12q13 Amp 41% PRIM1 [58]

12q14 Amp 10% CDK4 [45, 57]

12q15 Amp 3–25% MDM2 [47, 48, 57, 72, 73]

13q14.2
LOH 19–67% RB1 [43–55]

Mut 25–35% RB1 [46, 56]

16q23.1-q23.2 Del 30% WWOX [107]

17p11.2-p12 Amp 20–78%
COPS3, PMP22,

MAPK7
[20, 49, 52, 55, 65, 68, 70, 75–80]

17p13.1
Del,
LOH

29–42% TP53 [44, 62, 65]

Mut 10–39% TP53 [25, 44, 47, 48, 56, 62, 67–71]

18q (MCR 18q21-q23) Del 31–64% [44, 53, 110, 114]

MCR, minimal common region; Del, deletion; Amp, amplification; Mut, mutation.

kinase inhibitors (CDKNs), to promote stability of the
genome [42]. LOH or deletion of the RB1 locus has been
detected in 19–67% of tumours [43–55], and RB1 mutations
have been detected in about 25–35% of cases [56]. Either
type of alteration is associated with inactivation of RB1
expression in about 50% of tumours [46].

Loss of cellular control of other components of the pRB
pathway is often deduced upon observing genetic alterations
in osteosarcoma tumours. As such, pRB-independent mech-
anisms of pRB pathway deregulation may be present in
addition to pRB inactivation. Amplification of the cyclin-
dependent kinase gene CDK4 (chromosome 12q13-14) has
been detected in approximately 10% of tumours [45, 57].
Approximately 41% of tumours possess amplification of the
DNA primase gene PRIM1, which is also at chromosome
12q13 [58]. Both PRIM1 and CDK4 are involved in different
aspects of the cell cycle phase transition from G1 to S, but

the consequences of increased copy number of both genes are
unknown. On the other hand, genomic losses of the CDKN
genes, all of which encode tumour suppressor proteins that
inactivate the CDK proteins, are also frequent. The genes
CDKN2A/p16/INK4A, p14/ARF, and CDKN2B/p15/INK4B
are located at chromosome 9p21, and CDKN2A/p16 alter-
ation has been implicated in osteosarcoma development
[59]. Chromosome 9p21 undergoes deletion in 5–21% of
osteosarcomas [48, 60–63].

Deregulation of TP53 is also thought to be significant
in the development of osteosarcoma and occurs due to
mutations of the gene or gross changes to the gene locus at
17p13.1. Like pRB, the p53 protein is a tumour suppressor
that is activated upon DNA damage recognition and can
induce cellular quiescence, senescence, or apoptosis. How-
ever, p53 is by far the more commonly inactivated protein
in human cancer [64]. Individuals with the Li-Fraumeni
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Figure 1: Frequent chromosomal aberrations in sporadic conventional osteosarcoma. Green highlighted areas represent minimal common
regions of gain and amplification, or cytobands containing frequently gained and amplified genes. Red highlighted areas represent minimal
common regions of loss, or cytobands containing genes frequently lost. Refer to Table 1 and the text for more details regarding minimal
common regions and the presence of genetic mutations in some areas of the genome. Chromosome images adapted from the Mitelman
Database of Chromosome Aberrations and Gene Fusions in Cancer (http://cgap.nci.nih.gov/Chromosomes/Mitelman/. Accessed January
25, 2012).

syndrome, the manifestation of germline TP53 mutations,
have an increased incidence of osteosarcoma [4, 6]. LOH
and deletions of the 17p13.1 locus have been detected in 29–
42% of sporadic osteosarcomas [44, 62, 65, 66]. Mutations of
TP53 are present in 10–39% of cases [25, 44, 47, 48, 56, 62,
67–71].

Direct inactivation of TP53 expression is only one
mechanism by which the p53 pathway can be disrupted.
Functional inactivation of p53 at the posttranslational level
can also occur through regulation by tumourigenic proteins.
The oncoprotein MDM2 is a well-described inhibitor of
p53, functioning both in the promotion of p53 degradation
and the downregulation of its transcription. Amplification
of MDM2 (chromosome 12q15) is a relatively infrequent
event in primary osteosarcoma, occurring in 3–25% of
tumours [47, 48, 57, 72, 73] but appears to be considerably
more frequent in metastases and recurrences [47, 73, 74].
Nearby the TP53 locus at chromosome 17p11.2-p12 is
another focus of amplification that leads to increased copy
number of COPS3, PMP22, and MAPK7, among other genes.
Amplification of chromosome 17p11.2-p12 is more frequent
than that of chromosome 12q15, at a range of 20% to 78% of
tumours [20, 49, 52, 55, 65, 68, 70, 75–80]. COPS3 is strongly
suspected to be the amplicon target because, like MDM2, it
has an important role in promoting proteasome-mediated
degradation of p53.

Instability of chromosome 8q has been described by
many laboratories, with MYC (cytoband 8q24.21, also
known as c-MYC) being gained at varying frequencies. An
early report sets the frequency of amplification at 7%, and
those events only occurred in tumours from adult patients
[81]. Other groups have reported frequencies of gain and
amplification of MYC at 14–67% [20, 45, 49, 55, 71, 78,
82, 83]. However, other regions of 8q, including 8q23-qter,
8q21.3-8q23, and 8q21 commonly undergo copy number

increases as well [20, 49, 55, 77–79, 83, 84], suggesting that
other oncogenes located within these bands could have roles
in osteosarcoma pathogenesis [82].

Aberrations of the RECQL4 gene (8q24.4) are also
associated with osteosarcoma development. Loss of RECQL4
function via truncating mutation in individuals with the
autosomal recessive familial Rothmund-Thomson syndrome
results in significantly higher risk of osteosarcoma [7], but
in sporadic osteosarcoma the rate of RECQL4 mutation
is less than 5% [85]. However, increased copy number
and increased protein expression of RECQL4 have been
reported as a frequent event in sporadic osteosarcoma [27].
Bloom syndrome and Werner syndrome are two additional
autosomal recessive syndromes that predispose affected
individuals to osteosarcoma [86, 87]. Both syndromes result
from genomic instability caused by hereditary mutation of
a RECQL family DNA helicase gene [8]: Bloom syndrome
due to mutation of BLM (RECQL3) located at chromosome
15q26.1 and Werner syndrome due to mutation of WRN
(RECQL2) located at chromosome 8p12. Distinct regions
of chromosome arms 15q and 8p are prone to inconsistent
rearrangements and copy number alterations in sporadic
osteosarcoma, frequently as amplicons within 15q and loss
of 8p regions [50, 75, 78, 88].

Amplifications within the short arm of chromosome
6, with a minimal common region at 6p12-p21, have
been frequently observed at rates of 16–75% in conven-
tional osteosarcoma tumour specimens [9, 20, 45, 49, 65,
77, 78, 82, 89–92], including those from biopsy, surgical
resection, and metastases [89]. Data obtained using 10
osteosarcoma patient samples indicate amplification-related
overexpression of genes within the 6p12-p21 region [93].
Notably, in addition to this, a conditional mouse model of
osteosarcoma demonstrated overexpression of genes within
mouse genomic regions homologous to human 6p12-p21
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[94], consistent with observations of 6p deregulation in
human osteosarcoma.

A number of genes with oncogenic potential lie within
chromosome 6p12-p21 and in close proximity to this region.
E2F3 (6p22.3) is gained or amplified in approximately 60%
of osteosarcomas [92] and encodes the E2F3 transcription
factor. An increased level of E2F3 is associated with the accu-
mulation of DNA damage [95] and increased proliferation
rate in cancer [96, 97]. PIM1 is a protooncogene located at
6p21.2 that encodes a serine/threonine-protein kinase and
whose overexpression is associated with high-grade prostate
cancer [98]. VEGFA (6p21.1) is amplified in 25% of a cohort
of osteosarcoma specimens [99], and its protein product
promotes angiogenesis and blood vessel permeability in
cancer [100]. Also at cytoband 6p21.1 is the human cyclin D3
gene CCND3, which is commonly amplified in other cancers
[101, 102], CDC5L (cell division cycle 5-like), and RUNX2
(runt-related transcription factor 2). CDC5L encodes a cell
cycle regulator which may function in human osteosarcoma
[89], and its overexpression may promote mitotic entry and
shorten the G2 phase [103]. RUNX2 encodes a transcrip-
tion factor important in osteogenesis [104] and has been
expressed in up to 87% of tumour specimens, including
biopsy samples, implying that alteration of 6p12-p21 may be
an early event in the disease [45, 89]. In another report, gain-
related overexpression of RUNX2 was observed in 60% of the
analysed osteosarcoma tumours [9], and overexpression of
RUNX2 is correlated with poor response to chemotherapy
[93].

Other genomic regions frequently altered in copy num-
ber but whose potential gene targets are less well charac-
terised in osteosarcoma have been abundantly described.
Amplifications of chromosome 1q, at minimal regions
including 1q10-q12 and 1q21-q31, occur in 6–59% of
tumours in addition to other rearrangements of 1q [50, 55,
77, 82–84]. Portions of chromosome 17q undergo mixed
duplication and deletion events in osteosarcoma [65, 75],
and LOH of the tumour suppressor gene BRCA1 (17q21.31)
has been detected [66].

Loss of chromosome 3q, with a minimal common region
at 3q13.31, has been observed in 6–80% of tumours [44, 45,
49–55]. The presence of a novel gene, limbic system-associated
membrane protein (LSAMP), at 3q13.31 is suggested to
have a significant tumour suppressive role in osteosarcoma
[49]. Another group has suggested the presence of an
osteosarcoma tumour suppressor gene at locus 3q26.2-q26.3
based on findings of frequent LOH of this region [105].

LOH at chromosome 10q26 has been reported in 60%
of a cohort, and the genes BUB3 and fibroblast growth factor
receptor 2 (FGFR2) are suspected to be of importance in
this region. BUB3 encodes a mitotic checkpoint protein and
could have a role in maintaining genomic stability, while
FGFR2 is involved in skeletal formation [106]. Deletion of
WWOX (chromosome 16q23.1-q23.2) has been reported in
30% of osteosarcomas [107], but, perhaps more importantly,
reduction of its expression occurs in up to 58% of specimens
and is associated with elevated RUNX2 expression [108]. In
a study of 91 osteosarcomas, LOH of the tumour-suppressor
gene APC (chromosome 5q21) was detected in 62% of cases,

while both amplification and deletion (the latter the more
frequent event) of TWIST (chromosome 7p21) and MET
(chromosome 7q31) were detected [109] (Table 1).

As at chromosome 3q, LOH at chromosome 18q has
been frequently observed, but no studies have defined a
distinct tumour suppressor gene important in osteosarcoma.
Chromosome 18q is lost in 31–64% of specimens [44, 53,
110]. This portion of chromosome 18 contains a locus of
susceptibility near 18q21-q23 that is linked to the Paget
disease of bone (PDB) [111, 112]. PDB is a disorder of older
adults which leads to osteosarcoma in about 1% of pagetic
patients, particularly in the case of familial PDB [113]. A
minimal common region of loss in osteosarcoma has been
identified as overlapping the locus associated with PDB [110,
114]. This region excludes previously identified candidate
genes including TNFRSF11A, which encodes RANK [114],
and deleted in colorectal cancer (DCC), which nonetheless is
frequently reduced in expression in osteosarcoma [115].

3.2. Telangiectatic Osteosarcoma. Telangiectatic osteosar-
coma is a rare subtype of the disease, accounting for between
2 and 12% of cases [116]. Few cytogenetic studies of this
subtype have been published, and most of the published
observations have described individual cases. Tumour cells
from two female patients with telangiectatic osteosarcoma
were predominantly normal genomically (46xx), though
one tumour possessed cells with trisomy 3 and the other
possessed pseudotetraploidy and telomeric associations in a
few cells [117]. One group has reported a TP53 mutation in
a single case which otherwise had normal RB1 and no copy
number change in MDM2 [56]. Other studies have reported
a constitutional inversion at chromosome 9p11-9q12 in
a patient, along with non-clonal balanced translocations
in the tumour [20], and a familial occurrence of telang-
iectatic osteosarcoma in cousins, but without any apparent
hereditary components [118]. Gains of chromosomes 6p12-
p21, 8q, 12q13-q15, and 14q, along with loss of 2q24-qter,
have been observed in one tumour [50]. Overall, however,
reported cases of telangiectatic osteosarcoma appear to
have relatively few structural and numeric chromosomal
alterations in comparison to the other subtypes of the disease
[50, 91].

3.3. Small Cell Osteosarcoma. Histologically, small cell
osteosarcoma can be mistaken for Ewing’s sarcoma, but cyto-
genetically they lack any consistent genetic alteration. The
t(11; 22)(q24; q12) translocation, typical of Ewing’s sarcoma,
has been reported in one case of small cell osteosarcoma
tumour [119]. These results have not been replicated in
subsequent studies [120, 121], but a EWSR1-CREB3L1 fusion
transcript was detected in a small cell osteosarcoma tumour
[122]. Complex structural and numerical rearrangements
of multiple chromosomes have been found in two cases
of this subtype studied by different labs [75, 88], one of
which possessed amplification of 6p12-p21. A study of
MDM2 copy number and TP53 and RB1 mutations in a
single small cell osteosarcoma specimen reported normal
TP53, RB1, and MDM2 [56]. Another study found complex
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Figure 2: Chromosome 6p rearrangement. Chromosome 6p12-p21, which contains RUNX2, frequently undergoes complex rearrangements
in osteosarcoma and is one example of a distinct genomic locus that undergoes such alterations in this cancer. In this case, there is gain and
amplification of the labeled genes (with wide variation between cells) as shown in the image of interphase fluorescence in situ hybridisation
(FISH) for chromosome 6p. The FISH experiment employed probes for FBXO9 (yellow), RUNX2 (orange), PIM1 (green), E2F3 (red), and
the centromere of chromosome 6 (light blue). The RUNX2 immunohistochemistry (IHC) image was obtained after staining for RUNX2
protein. High levels of the protein were nearly ubiquitous in the nuclei of cells and were associated with genetic amplification of RUNX2.
The FISH and IHC images were obtained via experiments performed on serial formalin-fixed paraffin-embedded sections of one osteoblastic
(conventional) osteosarcoma tissue specimen. MSC, mesenchymal stem cell.

structural rearrangements of chromosomes 6, 16, and 17 and
monoallelic deletion of TP53 in one tumour [123].

3.4. Periosteal Osteosarcoma. The genetic alterations
observed in this subtype have been largely inconsistent.
Cells in one case were found only with an additional copy
of chromosome 17 [117], in another possessed only gain of
20q12-q13.2 [50], while in a third case were the only cells
in a cohort of 31 osteosarcomas of various subtypes to have
no DNA copy number aberrations at all [83]. Another study
of three periosteal osteosarcomas reported gains of 2q, 5p,
8q, portions of 12p and 12q, and chromosomes 14 and 21,
as well as losses of chromosomes 6, 8p, and 13. The same
study reported focal amplifications of 8q11-q24 in one case
and of 12q11-q15 in each of the other two cases, in addition
to various other amplicons [75]. Complex chromosomal
alterations have been reported by others [124, 125], and
point mutations in TP53 have also been detected [126].

3.5. High-Grade Surface Osteosarcoma. Amplification of the
sarcoma amplified sequence (SAS) gene (located at 12q14.3-
15) was reported in a single case of high-grade surface
osteosarcoma and six cases of low-grade surface tumours
[127]. However, there are no published observations of

cytogenetic alterations in prechemotherapy biopsies of high-
grade surface osteosarcomas.

3.6. Low-Grade Osteosarcoma. In one CGH study of low-
grade central osteosarcoma, six of seven specimens possessed
a single copy number change and there were recurrent gains
at 12q13-q14, 12p, and 6p21.1-p21.3 among the cases [128].
Amplification of oncogene ERBB2 (chromosome 17q12) has
been detected in 26% of low-grade tumours [129]. Other
researchers assayed 21 tumours of this subtype by sequencing
for TP53 and the oncogene HRAS, and no specimens
possessed mutations of either gene. However, amplification
of MDM2 was detected in 19% of the 21 cases [130].
A separate study described amplification of chromosome
12q13-q15 in five low-grade central osteosarcomas and
amplification-related overexpression of MDM2 and CDK4
which lie within the region [131]. Both the overall lack of
complex chromosomal aberrations and the low frequency of
TP53 mutations differentiate this subtype from conventional
high-grade osteosarcoma.

Parosteal osteosarcoma is characterised by a high rate
of MDM2 amplification (chromosome 12q13-q14), in up
to 83% of studied tumours [72, 132]. Chromosome 12q13-
q15 amplification products have also been found within
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supernumerary ring chromosomes in another study that
detected amplification of the region in 100% of the speci-
mens examined [133].

4. Conclusions

Osteosarcoma is characterised by extensive and heteroge-
neous genetic complexity, which is reflected in the similarly
complex epigenetic and expression alterations in tumours
[134] and is visually apparent in the results of quantitative
research (Figure 2). Mechanisms of genomic instability may
be facilitated by the repetitive DNA sequences ubiquitous in
the human genome, particularly low copy repeats [92, 135],
but this area still requires further study. Unfortunately, even
though several alterations are relatively consistent across
cohorts of tumours, the accumulated knowledge of genetic
changes in osteosarcoma has yet to significantly impact
survival rates. Clinical markers continue to be the most
reliable indicators for prognostication [136]. Overall, the
multitude of genetics studies of osteosarcoma serves to
illustrate the extremes to which DNA alterations in cancer
can reach, but it is hoped that accurate biomarkers and
targeted therapies will soon be revealed for this disease.
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L. Gárate Iturriagagoitia, F. Antillón Klüssmann, and L.
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